Bernstein-Gelfand-Gelfand Sequences
نویسندگان
چکیده
منابع مشابه
Ja n 20 00 BERNSTEIN – GELFAND – GELFAND SEQUENCES
This paper is devoted to the study of geometric structures modeled on homogeneous spaces G/P , where G is a real or complex semisimple Lie group and P ⊂ G is a parabolic subgroup. We use methods from differential geometry and very elementary finite–dimensional representation theory to construct sequences of invariant differential operators for such geometries, both in the smooth and the holomor...
متن کاملA generalization of the category O of Bernstein–Gelfand–Gelfand
In the study of simple modules over a simple complex Lie algebra, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this note, we define a family of categories which generalizes the BGG category. We classify the simple modules for some of these categories. As a consequence we show that these categories are semisimple....
متن کاملWEIGHTS IN SERRE’S CONJECTURE FOR GLn VIA THE BERNSTEIN-GELFAND-GELFAND COMPLEX
Let ρ : Gal(Q/Q)→ GLn(Fp) be an n-dimensional mod p Galois representation. If ρ is modular for a weight in a certain class, called p-minute, then we restrict the FontaineLaffaille numbers of ρ; in other words, we specify the possibilities for the restriction of ρ to inertia at p. Our result agrees with the Serre-type conjectures for GLn formulated by Ash, Doud, Pollack, Sinnott, and Herzig; to ...
متن کاملResonance, Linear Syzygies, Chen Groups, and the Bernstein-gelfand-gelfand Correspondence
If A is a complex hyperplane arrangement, with complement X, we show that the Chen ranks of G = π1(X) are equal to the graded Betti numbers of the linear strand in a minimal, free resolution of the cohomology ring A = H(X, k), viewed as a module over the exterior algebra E on A: θk(G) = dimk Tor E k−1(A, k)k , for k ≥ 2, where k is a field of characteristic 0. The Chen ranks conjecture asserts ...
متن کاملDifferential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds
The quantum group version of the Bernstein-Gelfand-Gelfand resolution is used to construct a double complex of Uq(g)-modules with exact rows and columns. The locally finite dual of its total complex is identified with the de Rham complex for quantized irreducible flag manifolds. MSC: 17B37, 58B32
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematics
سال: 2001
ISSN: 0003-486X
DOI: 10.2307/3062111